Induction of cellular prion protein (PrPc) under hypoxia inhibits apoptosis caused by TRAIL treatment
نویسندگان
چکیده
Hypoxia decreases cytotoxic responses to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. Cellular prion protein (PrPc) is regulated by HIF-1α in neurons. We hypothesized that PrPc is involved in hypoxia-mediated resistance to TRAIL-induced apoptosis. We found that hypoxia induced PrPc protein and inhibited TRAIL-induced apoptosis. Thus silencing of PrPc increased TRAIL-induced apoptosis under hypoxia. Overexpression of PrPc protein using an adenoviral vector inhibited TRAIL-induced apoptosis. In xenograft model in vivo, shPrPc transfected cells were more sensitive to TRAIL-induced apoptosis than in shMock transfected cells. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia.
منابع مشابه
Silencing of prion protein sensitizes breast adriamycin-resistant carcinoma cells to TRAIL-mediated cell death.
We investigated the relationship between the resistance to the proapoptotic action of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) and cellular prion protein (PrPc) function, using the TRAIL-sensitive MCF-7 human breast adenocarcinoma cell line and two TRAIL-resistant sublines: 2101 and MCF-7/ADR. All of the cell lines tested expressed TRAIL-R1 and TRAIL-R2. TRAIL decoy recep...
متن کاملGingerol prevents prion protein-mediated neuronal toxicity by regulating HIF prolyl hydroxylase 2 and prion protein
Prion diseases are a family of progressive neurodegenerative disorders, which are fatal in the majority of cases and affect both humans and domestic animals. Prion protein (PrP) (106-126) retains the neurotoxic properties of the entire pathological PrPsc and it is generally used as a reasonable model to study the mechanisms responsible for prion diseases. In our previous studies, we demonstrate...
متن کاملPrion peptide-mediated cellular prion protein overexpression and neuronal cell death can be blocked by aspirin treatment.
Prion diseases are infectious neurodegenerative disorders characterized by the conversion of the cellular prion protein (PrPc) to the misfolded isoform (PrPsc). Prion peptide PrP 106-126 [PrP (106-126)] shares many physiological properties with PrPsc; it is neurotoxic in vitro and in vivo. PrP (106-126) induces neurotoxicity by the overexpression of PrPc and activation of the mitogen-activated ...
متن کاملCellular Prion Protein (PrPc) and Hypoxia: True to Each Other in Good Times and in Bad, in Sickness, and in Health
The cellular prion protein (PrPc) and hypoxia appear to be tightly intertwined. Beneficial effects of PrPc on neuronal survival under hypoxic conditions such as focal cerebral ischemia are strongly supported. Conversely, increasing evidence indicates detrimental effects of increased PrPc expression on cancer progression, another condition accompanied by low oxygen tensions. A switch between ana...
متن کاملThe normal cellular prion protein and its possible role in angiogenesis.
Cellular Prion Protein (PrPc) is a ubiquitous glycoprotein present on the surface of endothelial cells. Resting vascular endothelial cells show minimum expression of PrPc and can constitutively release PrPc. PrPc participates in cell survival, differentiation and angiogenesis. During development, neonatal brain endothelial cells transiently express PrPc. Our group recently reported upregulation...
متن کامل